M1.(a)For reactions 1 to 3 must show complex ions as reactants and products Take care to look for possible identification on flow chart

	Reaction	1
--	----------	---

ammonia solution

W is [Co(NH₃)₆]²⁺

$$\begin{split} [Co(H_2O)_6]^{2*} + 6NH_3 & \rightarrow [Co(NH_3)_6]^{2*} + 6H_2O \\ Correct \ equation \ scores \ all \ 3 \ marks \end{split}$$

Reaction 2

Allow oxygen, Do not allow air

 H_2O_2

X is [Co(NH₃)₆]³⁺

 $\begin{aligned} & 2[\text{Co}(\text{NH}_3)_6]^{2*} + \text{H}_2\text{O}_2 \rightarrow 2[\text{Co}(\text{NH}_3)_6]^{3*} + 2\text{OH}^- \\ & Allow \ 2[\text{Co}(\text{NH}_3)_6]^{2*} + \frac{1}{2}\text{O}_2 + H_2\text{O} \rightarrow 2[\text{Co}(\text{NH}_3)_6]^{3*} + 2\text{OH}^- \\ & \text{Correct equations score all 3 marks} \end{aligned}$

Reaction 3

HCI

Do not allow CI- but mark on

1

1

1

1

1

1

$$[Co(H_2O)_6]^{2*} + 4Cl^- \rightarrow [CoCl_4]^{2*} + 6H_2O/$$
Correct equation scores previous mark
$$[Co(H_2O)_6]^{2*} + 4HCl \rightarrow [CoCl_4]^{2*} + 6H_2O + 4H_4$$

1

1

1

1

Reaction 4

 Na_2CO_3 Or $NaOH/NH_3$ Do not allow $CaCO_3$ as a reagent but mark on

Z is $CoCO_3$ $Co(OH)_2/Co(H_2O)_4(OH)_2$

$$\begin{split} & [\text{Co}(\text{H}_2\text{O})_6]^{2*} + \text{CO}_3^{2-} \rightarrow \text{Co}\text{CO}_3 + 6\text{H}_2\text{O} \quad [\text{Co}(\text{H}_2\text{O})_6]^{2*} + 2\text{O}\text{H}^- \rightarrow \\ & \text{Co}(\text{H}_2\text{O})_4(\text{O}\text{H})_2 + 2\text{H}_2\text{O} \text{ etc} \\ & \text{Allow waters to stay co-ordinated to Co. This mark also} \\ & \text{previous mark} \end{split}$$

Or
$$[Co(H_2O)_{\theta}]^{2*}$$
 + Na₂CO₃ \rightarrow CoCO₃ + 6H₂O + 2Na^{*}
Allow Co^{2*} + CO₃^{2*} \rightarrow CoCO₃

(b) $SO_{3^{2^{*}}} + \frac{1}{2}O_{2} \rightarrow SO_{4^{2^{*}}}$ Allow multiples

1

1

The activation energy is lower (for the catalysed route) Or Co³⁺ attracts SO₃²/Co²⁺ attracts SO₃²/oppositely charged ions attract

 $1/_2O_2$ + 2Co²⁺ + 2H⁺ \rightarrow H₂O + 2Co³⁺

PhysicsAndMathsTutor.com

1

$\label{eq:2Co3+} 2Co^{\scriptscriptstyle 3^{\scriptscriptstyle +}} + SO_{\scriptscriptstyle 3^{\scriptscriptstyle 2^{\scriptscriptstyle -}}} + H_{\scriptscriptstyle 2}O \rightarrow 2Co^{\scriptscriptstyle 2^{\scriptscriptstyle +}} + SO_{\scriptscriptstyle 4^{\scriptscriptstyle 2^{\scriptscriptstyle -}}} + 2H^{\scriptscriptstyle +}$ Allow these equations in either order

M2.		(a)	$2Fe^{2*} + S_2O_8^{2-} \rightarrow 2Fe^{3*} + 2SO_4^{2-}$	1
		2Fe	3* + 2I ⁻ \rightarrow 2Fe ^{2*} + I ₂	1
		two to re	negative ions repel / lead to reaction that is slow / lead eaction that has high E_{a}	_
		iron	able to act because changes its oxidation state	1
		With	n iron ions have alternative route / route with lower	1
		activ	vation energy	1
	(b)	(i)	[Fe(H₂O)₀] ^{3*} → [Fe(H₂O)₀OH] ^{2*} + H ⁺ can have H₂O on LHS and H₃O ⁺ on R do not penalise further hydrolysis equations allow high charge density Fe ^{3*} ion has high <u>er</u> charge (to size ratio) (than Fe ^{2*})	1
			increases polarisation of co-ordinated water / attracts O releasing an H ⁺ ion / weakens O–H bond	1
		(ii)	$Cr_2O_7^{2-}$ + 14H ⁺ + 6Fe ²⁺ → 2Cr ³⁺ + 7H ₂ O + 6Fe ³⁺ or 6 mol Fe(II) react with 1 mol dichromate If factor of 6 not used max = 3 for M2, M4 and M5 e.g. 1:1 gives ans= 8.93 to 8.98% (scores 3)	1

	moles dichromate = $23.6 \times 0.218/1000 = 5.14 \times 10^{-4}$	1
	moles iron = 5.14 × 10-₄ × 6 = 0.00309	
	M3 also scores M1	
		1
	mass iron = 0.00309 × 55.8 = 0.172	
	Mark is for moles of iron × 55.8 conseq	
	Allow use of 56 for iron	
		1
	% by mass of iron = 0.172 × 100/0.321 = 53.7%	
	Answer must be to at least 3 sig figures allow 53.6 to 53.9	
	Mark is for mass of iron × 100/0.321 conseq	
		1
(c)	brown precipitate / solid	
(c)	brown precipitate / solid Allow red-brown / orange solid	
(c)	brown precipitate / solid Allow red-brown / orange solid Not red or yellow solid	
(c)	brown precipitate / solid Allow red-brown / orange solid Not red or yellow solid	1
(c)	brown precipitate / solid <i>Allow red-brown / orange solid</i> <i>Not red or yellow solid</i> bubbles (of gas) / effervescence/ fizz	1
(c)	brown precipitate / solid <i>Allow red-brown / orange solid</i> <i>Not red or yellow solid</i> bubbles (of gas) / effervescence/ fizz <i>Allow gas evolved / given off</i>	1
(c)	brown precipitate / solid <i>Allow red-brown / orange solid</i> <i>Not red or yellow solid</i> bubbles (of gas) / effervescence/ fizz <i>Allow gas evolved / given off</i> <i>Do not allow just gas or</i> CO ₂ or CO ₂ gas	1
(c)	brown precipitate / solid <i>Allow red-brown / orange solid</i> <i>Not red or yellow solid</i> bubbles (of gas) / effervescence/ fizz <i>Allow gas evolved / given off</i> <i>Do not allow just gas or CO</i> ² <i>or CO</i> ² <i>gas</i>	1
(c)	brown precipitate / solid Allow red-brown / orange solid Not red or yellow solid bubbles (of gas) / effervescence/ fizz Allow gas evolved / given off Do not allow just gas or CO₂ or CO₂ gas 2[Fe(H₂O)₀]³+ + 3CO₃²- → 2Fe(H₂O)₃(OH)₃ + 3CO₂ + 3H₂O	1
(c)	brown precipitate / solid Allow red-brown / orange solid Not red or yellow solid bubbles (of gas) / effervescence/ fizz Allow gas evolved / given off Do not allow just gas or CO_2 or CO_2 gas $2[Fe(H_2O)_6]^{3+} + 3CO_3^{2-} \rightarrow 2Fe(H_2O)_3(OH)_3 + 3CO_2 + 3H_2O$ Allow	1
(c)	brown precipitate / solid Allow red-brown / orange solid Not red or yellow solid bubbles (of gas) / effervescence/ fizz Allow gas evolved / given off Do not allow just gas or CO ₂ or CO ₂ gas $2[Fe(H_2O)_6]^{3*} + 3CO_3^{2*} \rightarrow 2Fe(H_2O)_3(OH)_3 + 3CO_2 + 3H_2O$ Allow $2[Fe(H_2O)_6]^{3*} + 3CO_3^{2*} \rightarrow 2Fe(OH)_3 + 3CO_2 + 9H_2O$	1
(c)	brown precipitate / solid Allow red-brown / orange solid Not red or yellow solid bubbles (of gas) / effervescence/ fizz Allow gas evolved / given off Do not allow just gas or CO ₂ or CO ₂ gas $2[Fe(H_2O)_6]^{3*} + 3CO_3^{2-} \rightarrow 2Fe(H_2O)_3(OH)_3 + 3CO_2 + 3H_2O$ Allow $2[Fe(H_2O)_6]^{3*} + 3CO_3^{2-} \rightarrow 2Fe(OH)_3 + 3CO_2 + 9H_2O$ Use of Na ₂ CO ₃	1
(c)	brown precipitate / solid Allow red-brown / orange solid Not red or yellow solid bubbles (of gas) / effervescence/ fizz Allow gas evolved / given off Do not allow just gas or CO ₂ or CO ₂ gas $2[Fe(H_2O)_5]^{3*} + 3CO_3^{2-} \rightarrow 2Fe(H_2O)_3(OH)_3 + 3CO_2 + 3H_2O$ Allow $2[Fe(H_2O)_5]^{3*} + 3CO_3^{2-} \rightarrow 2Fe(OH)_3 + 3CO_2 + 9H_2O$ Use of Na ₂ CO ₃ e.g + 3Na ₂ CO ₃ \rightarrow + + + 6Na [*]	1

[16]

1

M3. (a) Same phase/state

(b) Because only exist in one oxidation state Allow do not have variable oxidation states

(c)	$2I^{-} + S_2O_8^{2-} \rightarrow I_2 + 2SO_4^{2-}$ Ignore state symbols Allow multiples	1
(d)	Both (ions)have a negative charge Or both have the same charge Or (ions) repel each other Do not allow both molecules have the same charge (contradiction)	1
(e)	$2Fe^{_{2^{\star}}} + S_2O_8^{_{2^{-}}} \rightarrow 2Fe^{_{3^{\star}}} + 2SO_4^{_{2^{-}}}$	1
	$2Fe^{_{3^*}} + 2I^- \rightarrow 2Fe^{_{2^*}} + I_2$	
	Equations can be in any order	1
	Positive and negative (ions)/oppositely charged (ions) <i>Mark independently</i>	1
(f)	Equations 1 and 2 can occur in any order Allow idea of Fe³ converted to Fe² then Fe² converted back to Fe³	1
	 (a) Incomplete (or partially filled) d orbitals/sub-shells Do not allow d shell 	

M4.

[8]

1

1

(c)	(i)	[H₃N–Ag–NH₃] ⁺ Allow [CI–Ag–CI] ⁻ or similar Cu(I) ion Allow compounds in (i), (ii) and (iii) (eg CI-Be-CI) Allow no charge shown, penalise wrong charge(s)	1
	(ii)	Cis platin drawn out as square planar Allow NiX₄²- etc	1
	(iii)	[CuCl₄]²- drawn out as tetrahedral ion Or [CoCl₄]²- drawn out	1
(d)	(i)	$SO_2 + 1/2O_2 \rightarrow SO_3$ Allow multiples Allow $SO_2 + 1/2O_2 + H_2O \rightarrow H_2SO_4$ ignore state symbols	1
	(ii)	In a different phase/state (from the reactants)	1
	(iii)	$V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$ can be in either order	1
		$V_2O_4 + 1/2O_2 \rightarrow V_2O_5$ allow multiples	1
	(iv)	Surface area is increased	1
		By use of powder or granules or finely divided Allow suspending/spreading out onto a mesh or support	1
(e)	(i)	Forms two or more co-ordinate bonds Allow more than one co-ordinate bond or <u>donates</u> more than 1 electron pair. Do not allow "has more than one electron pair"	

(ii)	Number of product particles > Number of reactant particles Allow molecules/entities instead of particles Penalise incorrect numbers (should be 2→5)	1
	Disorder increases or entropy increases (or entropy change is positive) Allow ΔG must be negative because $\Delta H = 0$ and ΔS is +ve	1
(iii)	6	1
	Cyanide strongly bound to Co (by co-ordinate/covalent bond)	1